If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-79x+1=0
a = 1; b = -79; c = +1;
Δ = b2-4ac
Δ = -792-4·1·1
Δ = 6237
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6237}=\sqrt{81*77}=\sqrt{81}*\sqrt{77}=9\sqrt{77}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-9\sqrt{77}}{2*1}=\frac{79-9\sqrt{77}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+9\sqrt{77}}{2*1}=\frac{79+9\sqrt{77}}{2} $
| -5=7m | | 1/6x+6-4/x^2-1=8/x-1 | | 3+x=2x+3 | | (3z-3)=5.4 | | 3(y+7)-8y=26 | | 9x+5=7x–9 | | 2-4=2x | | x-8+2-4=12-8x+14 | | 3+4(c)=15 | | -12=-9+8x | | (3z-3)=6.6 | | (z=10)/9=2 | | -6=3x+11 | | 150m-100m+47,750=50,500-200m | | 1.8^n=3 | | 3+1=d | | 3x-41=2x+14 | | 150m-100+47,750=50,500-200m | | 8x-(-15+3-17)+18=2x-(-5) | | 27+73=100+d*100−365 | | 150m-100+47,750=50,500-200 | | 131-u=254 | | 1/4x+8=-6 | | 1/7x=-16 | | 2x-3÷5=-13 | | 6/9.4=4.2/x | | 4(×+3)=3(3x-1) | | 2n+35=107 | | 0.25x+38.61=C | | (3x-1)/4=(4x-2)/5 | | 70-5x=320 | | 3x-1)/4=(4x-2)/5 |